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I. INTRODUCTION

Let X be a compact subset of the closed interval [a, b] and let C(X) denote
the space of all continuous real-valued functions defined on X, normed by

III1I = max{! w(x)j(x)l: XEX}.

Here w(x) is a fixed element of C(x), positive throughout X. If w == 1 then
we shall write II . 1100 • Let K be a convex subset of C(X) and <P a continuous
mapping of K into C(X). Fixing a subset M of K, we shall be interested in
the problem of approximating g E <P(K) with elements from lJ>(M). With some
additional assumptions on <P, g, K, and M we shall be able to develop a theory
for this nonlinear approximation problem which is quite similar to the
standard Chebyshev theory. Because of the applications of this theory to
iterative processes that can be used to compute the value of a function
(such as X l / N) we shall use the following terminology: if p EM has the
property that

II g - <P(p)1I :"( II g - <P(q)11

for all q E M then we shall say that p is a best starting approximation for g
(with respect to lJ> and M).

A specific example of this theory is the following. Let x = [a, bJ, a > 0,
K = {jE era, b):j > O}, w(x) = r l / 2 and lJ>(h)(x) = (~2)(h(x) + x/hex»~,

where ifJ is a single Newton iteration for calculating X I / 2 starting with hex).
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Set M = 7Tn n K where 7Tn consists of all polynomials of degree less than or
equal to n (some fixed n). Then for g(x) = X 1(2 the above approximation
problem reduces to that of relative approximation of X 1(2 with functions
(lj2)(p(x) + xjp(x)). This problem was first studied by Moursund [12], who
showed that there exists a unique p* E M minimizing

1

'1 xlj2 - <P(p)(x) II
X1j2 ,

t<Xl

over allp E M. Also, he showed thatp* is the unique element of Mminimizing

II X
1j2

- <Pm(p)(x) 1'1

I X
1j2

i<Xl

over all p E M, where <Pk(h) == <P(<Pk-1(h)), <pI = <P. More recently, Sterbenz
and Fike [14] and King and Phillips [6] showed (independently) that p* is
a multiple of p, the best relative approximation to X 1(2 on [a, b]. Finally, a
somewhat more numerical study of this problem has been done by
Holzwarth [4].

2. GENERAL THEORY

In this section, we shall show that if <p satisfies certain conditions then the
behavior encountered in the above special problem is preserved in the more
general one.

DEFINITION 1. The operator <p is said to be pointwise strictly monotone
at f E K provided for each h, k E K we have

LEMMA 1. Let <P: K ->- C(X) be pointwise strictly monotone at fE K. If
k E K and at X o E X, k(xo) =1= f(xo) then <P(k)(xo) =1= <P(f)(xo).

Proof In the above definition let h = f Then I <P(k)(xo) - <P( f)(xo)! > O.

DEFINITION 2. The operator <P is said to be pointwise fixed on f E K
provided hE K, XO E X and h(xo) = f(xo) imply <P(h)(xo) = <P(f)(xo)'

Let us give an example of a pointwise strictly monotone operator at f
which is not pointwise fixed on f Define K C C[O, 1] by

K = {f(x) = ax2: 0 ~ a ~ 1}
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and fP: K ->- qo, 1] by fP(ax2) = x2+ (l - a). Now fP is continuous and
pointwise strictly monotone at x 2. Indeed, suppose axo2 < bxo2 ~ X 0

2; then
Xo # °and a < b ~ I so that I fP(ax2)(xo) - X0

2 / = I - a > I - b =
/ fP(bx2)(xo) - x o2 / as fP(x2) = x2. Each ax2E K has the property that
ax2 = x 2 at x = 0; but fP(ax)(O) # °if a # I so that fP is not pointwise
fixed on x2•

Next, we wish to show that the composition of two continuous operators
whose domains and ranges match up correctly and both of which possess
the above two properties is again such an operator.

LEMMA 2. Let fP: K ->- C(X) and lJ': L ->- C(X) be continuous operators.
Suppose that fP(K) C L, fP is pointwise strictly monotone and pointwise fixed
at f EO K and lJ' is pointwise strictly monotone and pointwise fixed at fP( f) E L.
Then lJ'fP: K ->- C(X) is a continuous pointwise strictly monotone operator atf
which is also pointwise fixed on f

Proof The only property of lJ'fP that needs to be shown is the pointwise
strict monotonicity at/, as the other properties follow trivally. We first prove
that if h, k E K satisfy k(xo) < h(xo) ~ f(xo) or f(xo) ~ h(xo) < k(xo) then
either fP(k)(xo) < fP(h)(xo) ~ g(xo) or g(xo) ~ fP(h)(xo) < fP(k)(xo) where
fP( f) = g. From the pointwise strict monotonicity of fP we have that
I <P(k)(xo) - g(xo)[ > I fP(h)(xo) - g(xo)j· Suppose that fP(k)(xo) < g(xo) <
fP(h)(xo) or fP(h)(xo) < g(xo) < fP(k)(xo). Let la(x) = rxh(x) + (1 - rx) k(x),°~ u: ~ I. Then la EO K and fP(la)(xo) is a continuous function of rx. Thus, by
the intermediate value theorem we know that there exists an rxo E (0, I) such
that fP(la )(xo) = g(xo)· This implies la (xo) = f(xo) which is a contradiction.

o 0

Thus, we must have either fP(k)(xo) < fP(h)(xo) ~ g(xo) or g(xo) ~ fP(h)(xo) <
fP(k)(xo). From this it follows immediately that [lJ'fP(k)(xo) - lJ'fP( f)(xo)[ >
llJ'fP(h)(xo) - lJIfP(f)(xo)[·

One special case should be mentioned here, namely, the case where
fP: K ->- K. For example, Newton's iteration for calculating the value of
a nice function may be viewed as such an operator. This will be discussed in
a later section. One very nice property of such operators is stated in the next
Lemma.

LEMMA 3. IffP: K ->- K is a continuous operator on the convex set K which
is pointwise strictly monotone at f E K then fP is pointwise fixed on f.

Proof. Suppose hE K and, for some Xo E X, h(xo) = f(xo). Now if every
function k E K has the property that k(xo) = f(xo) then, necessarily
fP(h)(xo) = fP(f)(xo)' Assume there exists k E K such that k(xo) # f(xo). Let
k a = (1 - rx)k + rxf Then ka(xo) # f(xo) for rx E (0, 1). On the other hand,
ka ->- f as u: ->- 1, so that fP(ka) ->- fP(f). Since norm convergence implies
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pointwise convergence we must have £P(k,,)(xo) -+ £P( f)(xo). The assumption
that £P is pointwise strictly monotone atfimplies that

for all ex E (0, I)

so that £P(h)(xo) = £P(f)(xo)'
Because of the connection of this theory to iterative processes used on a

computer for evaluating special functions, we wish to state the following
corollary to Lemma 2.

COROLLARY l. If £P: K -+ K is continuous, £P(f) = f for some fE K and
£P is pointwise strictly monotone at f then £Pm: K -+ K (£pm(h) = £p(([>m-1(h)),
m = 2,3, ..., ([>1 = ([» is pointwise strictly monotone at f and ([>m(f) = f

In closing this section we wish to state an existence theorem which for
specific operators is sometimes difficult to check, but for the general case is
a standard statement.

THEOREM I. Let K be a convex subset ofC(X), M C K and let ([>: K -+ C(X)
be continuous. Then corresponding to each g E ([>(K) there exists p* E M
minimizing II g - ([>(p)ll over all p E M, provided there exists a compact subset
M 1 of M and a positive constant YJ such that q E M "-' M 1 implies
inf{11 g - ([>(p)ll: p EM} + YJ ~ II g - ([>(q)ll.

Theorem 1 follows simply from the fact that a continuous real function
on a compact set assumes there its minimum. However, as we shall see in the
examples to be studied later, the actual application of this theorem is
somewhat tedious.

3. CHARACTERIZATION THEOREMS

In this section we shall study the problem of characterizing best starting
approximations for special choices of K and M. We shall establish an
alternation type theory for each case considered and from this theory
conclude that the best starting approximation (if it exists) is unique. In what
follows, we assume that X C [a, b] has at least n + 1 points.

THEOREM 2. Let £P: K -+ C(X) be a continuous operator. Let V be an
n-dimensional Haar subspace of qa, b] and let M = K n V be a nonempty
relatively open subset of V. Finally assume that ([> is pointwise strictly monotone
andpointwise fixed atf E K "-' M. Then p E M is a best starting approximation
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Jar cP(J) if and only if there exist a sequence {X;};+l C X Jar which
Xl < X2 < .. , < Xn+l ,

I w(x;)(cP( J)(x;) - cP(p)(X;))1= II cP( J) - cP(p)I[
and

sgn(f(x;) - P(Xi)) = (_1)i+1 sgn(f(Xl) - p(x1)).

Proof. Since f I/: M, there exists a point X oE X for which 1(xo) '1= p(xo)'
Thus II cP(f) - cP(p)11 '1= O. Also, for some choices of cP, the family eJ>(M)
is not uniso1vent so that this alternation theorem does not follow from the
general theory of unisolvent families. Now suppose that

I w(x;)(eJ>(f)(x;) - cP(P)(Xi)) I = II cP(J) - eJ>(p)II

and

sgn(f(Xi) - p(x;)) = (_1)i+1 sgn(f(xl ) - p(x1)), i = 1,..., n + 1.

Then eJ>(f}(x;) '1= cP(P)(Xi)' Let q EM be such that II cP(f) - eJ>(q)II~
II cP(f) - eJ>(p)ll. Fix an i, 1 ~ i ~ n + 1. Then Iw(xi)(eJ>(f)(x;) - cP(q)(xi))1 ~
I w(xi)(eJ>(f)(x;) - eJ>(q)(xi))I. Now, either p(x;) > l(x;) or P(Xi) < lex;). In
the first case we must have P(Xi) ?:: q(x;) and in the second p(x;) ~ q(x;) by
the pointwise strict monotonicity of (/J at I But this implies that p == q as in
the standard theory.

Now suppose that p is a best starting approximation for eJ>( f) and that the
desired behavior is exhibited on a sequence {Xi}: C X with Xl < X2 < ... < Xk
where k is maximal and k ~ n. First of all let us dispose of the case where
the error curve is constant. That is, w(x)(cP( J)(x) - cP(p)(x)) = il cP(f) - eJ>(p)11
for all x E X (or -1/ cP(f) - eJ>(p)ID and sgn(f(x) - p(x)) is constant. Assume
the first occurs. In this case p(x) '1= lex) for any X is X as cP(f)(x) =1= eJ>(p)(x)
for each X E X. Since V is an n-dimensional Haar subspace of C[a, b] we know
that there exists q E V such that q > 0 on [a, b]. Therefore, there exists a
real A such that p + Aq is strictly betweenf and p. Also, since M is relatively
open in V we have that p + Aq E M for sufficiently small I A I. By the pointwise
strict monotonicity of cP at f and the continuity of all functions involved we
have that

1/ cP(f) - eJ>(p)1/ > II eJ>(f) - cP(p + Aq)l/,

which implies that a best starting approximation cannot have a constant error
curve.

Thus, we may assume that there exists {x;}~ C X, k ~ n on which

I w(xi)(eJ>(f)(Xi) - eJ>(p)(x;)) = Ii cP(f) - eJ>(p)1I

and
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Now subdivide [0, b] into relatively open intervals II"'" Ik such that Xi Eli,
the set of extreme points, i.e.,

{x E X: I w(x)($(f)(x) - $(p)(x))I = II $(f) - $(p)ll}

is a subset of U~1 Ii , I j n I r = 0 for j =F r, and at all extreme points in
each Ii the function f - p has a constant sign. Let

YisacompactsubsetofXandl w(x)($(f)(x) - $(p)(x))j < 11$(f)-$(p)11
for all x E Y. Thus, by continuity there exists p > 0 for which

max I w(x)($(f)(x) - $(p)(x))I ::( II $(f) - $(p)ll - p.
xeY

Next, let

Wi = {x E X n Ii: I w(x)($(f)(x) - $(p)(x))I ~ II $(f) - $(p)II/2

and sgn(f(x) - p(x)) = sgn(f(xi) - P(Xi))}'

Then W = U:=l Wi is a compact subset of X and by continuity there exists
an TJ > 0 such that If(x) - p(x)I ~ TJ on W. Let

Zi = {x E X n Ii: I w(x)($(f)(x) - (p)(x)) I ~ II $(f) - $(p)II/2

and sgn(f(x) - p(x)) =F sgn(f(xi) - p(xi))}

and let Z = U:=1 Zi' Note that I w(x)($(f)(x) - $(p)(x))! < 11$(f) - $(p)11
for all x E Z by the definition of the intervals Ii . Finally, let

Ui = {x E X n Ii: I w(x)($(f)(x) - $(p)(x)) \ ::( II $(f) - $(p)11/2}

and let U = U:=l Ui • Then, by continuity there exists 0 > 0, 0 < p such that

max I w(x)($(f)(x) - $(p)(x))I ::( II $(f) - $(p)11 - 8.
xeZUU

Now by the standard Haar theory, there exists q E V such that

sgn q(x) = sgn(f(xi) - P(Xi)) for all x E Ii, i = 1,... , k.

By the continuity of $ we can select a Al > 0 such that I A I ::( Al implies

max 1 w(x)($(f)(x) - $(p + Aq)(X)) I ::( 1\ $(f) - $(p)ll - 8/2.
xeYUZUU
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Next, by continuity off and p we can select a A2 , 0 < A2 ~ Al , such that
o < A < A2implies that p + Aq is strictly between f and p on W = U:=I Wi .
Thus, by the strict monotonicity of <P at f we have

max 1w(x)(<P(j)(x) - <P(p + Aq)(X))I < II <P(j) - <P(p)!I.
XEW

Combining all these results, we conclude that there exists a A > 0 for which

II <P(!) - <P(p + Aq)/I < II <P(f) - <P(p)lI.

Finally, for sufficiently small A > 0, P + Aq E M since M is open in V. Thus
p + >..q is a better starting approximation that p and we have arrived at
a contradiction. This completes the proof of the Theorem.

COROLLARY 2. If <P( f) has a starting approximation under the setting of
Theorem 2 then it is unique.

For our next example we shall define K as follows:

K = {iE C(X): I(x) ~ lex) ~ u(x)}

where I, u E C(X) satisfy I < u. Let V be an n-dimensional Haar subspace of
qa, b] and set M = K n V which we assume is nonempty.

THEOREM 3. Let <P: K - C(X) be a continuous operator which is pointwise
strictly monotone and pointwise fixed at f E K "-' M. Then p E M is a best
starting approximation for <P( f) if and only if there exists {Xi};+l for which

(a) Xl < X2 < ... < Xn+l ,

(b) I w(xi)(<P(f)(Xi) - <P(P)(Xi» I = II <P(f) - <P(p)ll, P(Xi) = U(Xi) or
P(Xi) = I(xi)'

(c) sgn*(f(xi) - P(Xi» = (_l)i+l sgn*(f(xl ) - p(x1»
where

1

sgn(j(x) - p(x)) if p(x) =F I(x) and p(x) =F u(x),
sgn*(j(x) - p(x) = +1 if p(x) = I(x)

-1 if p(x) = u(x).

Proof. Suppose p EM has the above properties on the set {Xi};+!' Let
q E M be such that /I <P(f) - <P(q)/1 ~ /I <P(I) - <P(p)lI. If P(Xi) = I(xi) then
P(Xi) ~ q(Xi) since q E M. If p(xi) = U(Xi) then p(xJ ~ q(Xi)' If

I w(xi)(<P(f)(Xi) - <P(P)(Xi))I = II <P(f) - <P(p)1I
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then IW(xi)(lP(f)(Xi) - lP(p)(Xi))I~ [W(xi)(lP(f)(Xi) - lP(q)(xi))I. Sincef¢ M
we have that II lP(!) - lP(p)11 > 0 so that sgn*(f(xi) - p(xi)) =F O. Suppose
sgn*(f(xi) -p(xi)) = + 1 then f(xi) > p(x;) and by the pointwise
strict monotonicity of lP at f we must have q(x;) ~ P(Xi)' Likewise, if
sgn*( f(Xi) - P(Xi)) = -1 then q(xi ) ~ P(Xi)' Thus

sgn*(f(xI ) - p(xI ))(-l)i(P(Xi) - q(x,)) ~ 0, i = 1,... , n + 1.

This implies P ~ q so that P is the best starting approximation for lP(f).
Now suppose that p E M is a best starting approximation for <P(f) and

thatP has the desired behavior on a set of points {Xi}~ C X, Xl < X2 < ... < Xk
where k is a maximal and k ~ n. Let us first show that it is not possible that
<P(f)(x) - <P(p)(x) ~ A, I AI > 0 for all X E X. For ifthis were the case then
we would have that P =F f for each x E X so that p + Aq is strictly between p
and f for sufficiently small A of proper sign and q E V is such that
q > 0 on [a, b]. Thus, we have thatp + Aq EM and II lP(f) - lP(p + ,\q)11 <
II <P(!) - lP(p)11 which is a contradiction.

Let II ,..., I k be a collection of open intervals in [a, b] such that Xi E Ii ,
Ii n I j = 0, for i =F j, all extreme points = {x E X: I w(x)(<p(f)(x) 
lP(p)(x))[ = II lP(f) - lP(p)ll, p(x) = lex) or p(x) = u(x)} are contained in
U~ Ii and for each extreme point in Ii the function sgn*(f(x) - p(x)) has
the same value. Now select q E V such that sgn q(x) = sgn*(f(xi) - p(xi))
for all X E Ii, i = 1,... , k. This we can do since k ~ n. Consider p + Aq for
real '\'. We shall show that there exists '\'0 such that p + Aoq E M and

II lP(!) ~ <P(p + Aoq)11 < II lP(!) - <P(p)ll.

Let Y = X n (U~~lli); Y is a compact subset of X and

I w(x)(<P(f)(x) - lP(p)(X)) I < II lP(!) - lP(p)11 for all x E Y.

Thus, by continuity there exists Al > 0 for which 0 < A < Al implies

max I w(x)(<P(j)(x) - lP(p + Aq)(X))I < II lP(!) - lP(p)ll.
XEY

Also, p(x) differs from both lex) and u(x) on Y so that there exists "2 such that
o < "2 ~ Al and 0 < " ~ ~ implies

lex) ~ p(x) + '\q(x) ~ u(x), X E Y.

Next, let

Wi = {x E X n Ii: I w(x)(lP(f)(x) - lP(p)(x))1 ? II lP(!) - lP(p)11/2
and sgn(f(x) - p(x)) = sgn*(f(xi) - P(Xi))}

and
Vi = {x E X n Ii: p(x) = lex) or p(x) = u(x)}.
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Then all extreme points contained in Ii are contained in Wi U Vi and by the
definition of q, the strict monotonicity of rp at f and continuity there exists
a A3 satisfying 0 < "3 ~ A2 , for which x E Wi U Vi and 0 < A ~ A3 imply

max I w(x)(rp(j)(x) - rp(p + "q)(x» I < II rp(j) - rp(p)1I
XEWiVVi

and
I(x) ~ p(x) + "q(x) ~ u(x).

Do this for each i = 1,... , k and let "4 be a positive real number for which the
above holds for all i. Let

Zi = {x E X n Ii: I w(x)(rp(f)(x) - rp(p)(x» I ~ II rp(f) - rp(p)II/2
and sgn(f(x) - p(x» # sgn*(f(x,) - P(Xi»}

and set Z = U:~l Zi' Note that Iw(x)(rp(f)(x) - rp(p)(x» I < II rp(f) - rp(p)11
for all x E Z, p(x) # I(x) and p(x) # u(x) for each x E Z by construction of
the intervals {Ii}' Finally, let

Ui = {x E X n Ii: I w(x)(rp(f)(x) - rp(p)(x» I ~ II rp(f) - rp(p)II/2}

and set U = U:~l Ui . Then by continuity, there exists a "s such that
o< As < A4 for which x E Z U U and 0 < " ~ "s imply

I w(x)(rp(f)(x) - rp(p + Aq)(x» I < II rp(f) - rp(p)1I

and
I(x) ~ p(x) + Aq(X) ~ u(x).

Combining all these results, we have that for 0 < A~ As,

II rp(f) - rp(p + Aq)11 < II rp(f) - rp(p)11

and p + Aq E M establishing the Theorem.

COROLLARY 3. In the above Theorem the best starting approximation for
l/J(f) is unique and does exist.

Proof Uniqueness is a consequence of the above proof. Existence follows
from the fact that M is a compact subset of C(X).

Before continuing to our next characterization Theorem we would like
to point out that Theorem 3 is true for more general functions I and u
(see [15, 16]).

For the last example we fix points {Yi}r~l in X where Yl < Y2 < ... < yp,
real numbers {ai}f=l and define K by

K = {IE C(X):f(Yi) = Gi, i = 1,2, ... ,p}.
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Let (au) j = 0, 1, ... , mi , i = 1,... , P be a second set of real numbers where
a iO = ai' 1 ~ i ~ p, m = L:~l (mi + 1) ~ nand y = max(mi + 1). Let V
be an n-dimensional extended Chebyshev space of order y of qa, b] (see [5]
and [9]) and define M by

M = {p E V:P(j)(Xi) = aij,j = 0, 1,... , mi; i = l, ... ,p}.

THEOREM 4. Let <P: K -->- C(X) be a continuous operator which is pointwise
strictly monotone and pointwise fixed at f E K ,....., M. Then p E M is a best
starting approximation for <P(f) if and only if there exists {xi}f:f+l ex,.....,
{Yt ,"" yp} for which Xl < ... < Xn-m+l,

I W(Xi)(<P(f)(Xi) - <P(p)(xi))1 = II <P(f) - <P(p)11

and

for i = 1,... , n - m + 1 where 7T(t) = (t - Yt)m1 ••• (t - yp)mp if p =j:. 0 and
7T(t) = I ifp = O.

The proof of this theorem is patterned after the proof of the corresponding
theorem in [9] and the previous two theorems and is therefore omitted.

Remark. Each of the above three theorems are true if we replace V by
Rmn[a, b], the standard class of rationals functions normalized in the usual
manner. The only change required is to change the number of characterizing
extreme points to the same number that is needed in the standard Chebyshev
approximation theory. The usual approximation problem corresponding to
Theorem 3 may be found in [8] and [16]. The theory developed in these
papers was referred to as approximation with rationals having restricted
ranges. Some of the theory corresponding to Theorem 4 for rational functions
can be found in [3,7, and 16]. In these papers it is noted that there need not
exist a best rational approximation satisfying interpolatory constraints. More
general families could also be used. An example of such families can be found
in a paper of Meinardus and Schwedt [11].

In the next section we shall apply this theory to some specific cases,
corresponding to Theorem 2. For some of these cases we shall find that the
best starting approximation for <P( f) is simply a multiple of the best relative
approximation to f Also, in some special cases we shall find that repeated
applications of <P (if well defined) does not change the best starting value.
Thus we shall close this section with a discussion of sufficient conditions on <P
for which this behavior occurs.

DEFINITION 3. We shall say that <P possesses property I at!E K provided
for each p E K and x, y E X, p(x)/f(x) = p(y)/f(y) implies <P(p)(x)/f(x) =
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tP(p)(y)/!(y), and p(y)/!(y) < p(x)/!(x) ~ I or p(y)/!(y) > p(x)/!(x) ;;: I
implies I I - tP(p)(x)/!(x)I < I I - tP(p)(Y)/!(Y)I.

DEFINITION 4. We shall say that tP is one sided at f provided either
(j)(k) ;;: if>( f) for all k E K or (j)(k) ~ tP( f) for all k E K.

THEOREM 5. Let if>: K -- C(X), if>(f) = f for some f E K where (j), K, and
M are as in Theorem 2 (V may be either an n-dimensional Haar subspace or
Rmn[a, bJ), f > 0 on X, C(X) be normed by II h II = II h/flloo and if> possess
property I at f Let p E V be the best relative approximation to f from V and
suppose 11(/ - p)/flloo = A > O. If op EM for 0 E [I/(1 + A), 1/(1 - A)] then
there exists 00 E (1/(1 + "), 1/(1 - ,,)) for which ooP is the best starting
approximation for f (with respect to if».

Proof Let us first note that we necessarily have" < I since arbitrarily
small positive functions exist in V. Now from the standard theory we know
that there exist points {xi}fi; C X (the number of points depending upon V
and possibly p) for which

(i) Xl < X 2 < ... < xn+l ,

(ii) I(f(xi) - P(Xi))/!(Xi)! = 11(/ - p)/p 1100 ,

(iii) sgn(f(xi) - P(Xi)) = (- I)i-1 sgn(f(x1) - p(xl )).

We shall assume without lost of generality that P(X1) > !(x1). Then
p(xI)/O + A) = !(X1) andp(x2)/(1 - A) = !(x2). Also, for x E Xwe have that
YP(xI)/!(X1) ;;: yp(x)/f(x) ;;: YP(X2)/!(X2) provided Y E [1/(1 + A), 1/(1 - '\)].
Thus by property I,

for all x E X. Also, since YP(Xi+2)/!(Xi+2) = YP(Xi)/!(X;) for i = 1,2,... , n - I
and Y E (I/(I + ,\), 1/(1 - ,\)) we have that I I - (j)(YP)(Xi+2)/!(Xi+2) [ =
I I - if>(YP)(Xi)/!(Xi)I for i = 1,2,... , n - I and Y E (1/(1 + A), 1/(1 - A)).
Now as Y decreases to I/O + A) we have that I I - tP(YP)(X1)/!(X1)I decreases
to 0 and I I - tP(YP)(X2)/!(X2)I increases (from 0) by the pointwise strict
monotonicity of (j). Likewise, as Y increases to 1/(1 - A) we have that
I 1 - (j)(YP)(X1)/!(XI)! is a strictly increasing (from 0) function of Y and
I 1 - if>(YP)(X2)/!(X2)/ is a strictly decreasing function of Y with limit O. Since
both these forms are continuous functions of y, we must have that there
exists Yo E (l/(I + A), 1/(l - A)) for which
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Finally, observing that for y E (1/(1 + A), 1/(1 - A» we have

we conclude that YoP is the best starting approximation for f by Theorem 2.

THEOREM 6. If<P of Theorem 5 satisfies <P: K --+ K and is also a one-sided
operator then <pm has all the same properties as <p and the best starting
approximation for <P( f) is also the best starting approximation for <Pm( f) for
m = 2,3,....

Proof The fact that <pm has all the properties of <p follows from
Corollary I and a simple inductive application of property I. Suppose that
<P(h) ?: ffor all hE K. Then, we have at the points Xl < X2 < ... < xn+l C X
characterizing the best starting approximation p for <P(f) that

(i) 1(<P(P)(Xi) - !(Xi»/!(Xi)! = [[(<P(p) - f)/fllrro , i = 1,... , n + 1,

(ii) sgn(f(xi) - P(Xi» = (_I)i-l sgn(f(xl) - p(xl», i = 1,... , n + 1.

But applying property I to these points m times we see that P is also the best
starting value for <Pm(f) = f The other case (<P(h) :(; <P(!) for all hE K)
follows in the same manner.

4. ApPLICATIONS

1. Let

S = {IE C2(0, oo):f > °on [a, b], °< a < b,

l' and 1" do not vanish on (0, (0) and range f = (0, oo)}.

For a given x E [a, b], the value offE Scan be found using Newton's method.
That is, fix x E [a, b] and let y(x) be a real number, then the sequence

Yo(X) = y(x)

Yn(X) = Yn-l(X) - (j-l(Yn_l(X» - x)(f'[f-l(Yn_tCx»]),
(1)

n = 1,2,... , is the Newton iteration for finding the unique zero of the equation

f-l(y) - X = °
starting with an initial guess of y(x). This sequence converges (quadratically)
to y = f(x) provided y(x) is sufficiently close to f(x). Since we wish to
calculate f(x) for all x E [a, b] on a high speed digital computer, we shall
select a class of functions M defined on [a, b] each of which is easily pro-
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grammed into our computer and use one of these functions as the initial
guess. That is, we wish to find a p EO M such that

U(Yn,p(x) - f(x»jf(x)/Ioo :(: U(Yn.ix) - f(x»jf(x)lIoo

for all q E M, where Yn.q(x) denotes the n-th Newton iterate at x starting with
q(x). Numerically, we would do this for functions f for which f- l is easily
evaluated, such as f(x) = X l / N , N = positive integers. This problem was
studied by Moursund and Taylor [13] and is a generalization of the subroutine
used to calculate X l / 2 on a high speed digital computer. We shall show that
the theory developed in this paper may also be applied to this problem. In
addition, we shall show that the behavior exhibited in Theorem 6 holds for
f(x) = x~, ex > 0 [17] and also, for f(x) = eX which is a new result.

To set these results in the framework of our theory we must consider
two cases.

Case 1. Fix f EO S and assume that either l' > 0 and 1" < 0 on (0, 00)

or l' < 0 and 1" < 0 on (0, 00). Here we set

K = {h EO C[a, b]: h > 0 on [a, b]}
and

NtCh)(x) = hex) - {f-l(h(x» - x}{ f'ff-l(h(x»)]}

for each hE K. It is easily seen that Nt: K ---+ K is continuous, Nt(f) = j,
Nt is pointwise monotone atj, pointwise fixed atfand one sided from above
atl

Case 2. Fix f EO S where either l' > 0 and 1" > 0 or l' < 0 and 1" > 0
holds on (0, (0). In this case the choice for K is somewhat more difficult.
The problem here is that Nt is a one-sided operator from below and large
values of hex) may give negative values for NtCh)(x). Since we wish to study
Ntm, m = 1,2,... , and we have assumed that the range offis (0, 00), we must
restrict the values of the functions in K so that the image of each of these
functions under Nf is again in K. Setting

N(x,y) = Y - {f-l(y) - X}{f'ff-l(y)]},

and calculating 8N(x, y)j8y, we see that for x fixed N(x, y) is a strictly
increasing function of y for 0 < y < f(x) and a strictly decreasing function
of y for y > f(x). Thus by the implicit function Theorem, the equation
N(x, y) = 0 defines y = y(x) > f(x) as a continuous function of x. Setting

K = {h EO C[a, b]: 0 < hex) < y(x) for x EO [a, b]}

we have that Nt: K ---+ K is continuous, Nf(f) = f, Nt is pointwise monotone
atf, pointwise fixed atfand one-sided from below atl Thus, we can state the
following analog of Theorem 2, for both of these cases [13].
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THEOREM 7. LetfE S, K be as above and V be a Haar subspace of qa, b]
or Rmn[a, b]. Set M = V n K. Then Pm E M is the unique best starting
approximation for f with respect to the moth Newton iteration if and only if
there exists{xi}f.::t C [a, b], Xl < x 2 < ... < Xn+l (the length of this sequence
depending on V and possibly Pm) for which

(i) I (f(Xi) - Nfm(Pm)(Xi»/f(Xi) I = 11(f - Nfm(Pm»/flloo ,
i = 1,... , n + 1

and

(ii) sgn(f(xi) - P(Xi» = (_1)1+1 sgn(f(Xl) - p(xJ), i = 1,... , n + 1.

Observe that nothing is said about the existence of a best starting approxi
mation forfin the above theorem. As noted earlier, this is a difficult problem
that must be studied separately. The existence of a best starting approximation
will depend upon the functionj, the interval [a, b] and the class of approx
imants V. For the special case thatf(x) = x"', ex E (0, 1) or f(x) = eX we can
show that a best starting approximation exists. For the function f(x) = X"',
the existence of the best starting approximation follows from the observation
that

Nf(h)(x) = ex[(ex - 1) hex) + x/h(x)l/"'-l]

approaches +00 as hex) approaches either °or +00. For this function,
we need make no special assumptions on [a, b] and V, other than the
requirement a > 0.

For the function f(x) = ea;, this question is more difficult. Here we note
that the function ji(x) = el+x satisfies N(x, ji(x» = °for all X E [a, b] where
N(x, y) = y(1 + X - In y). Thus, we define

K = {h E qa, b]: °< hex) < e1+Xfor all x E [a, b]}.

Let V be a Haar subspace of qa, b] or Rmn[a, b] and let p E V be
the best relative approximation to f with relative error ;\. If we require
;\ < (e - 1)/(e + 1), which is a requirement on V and the interval [a, b],
then we will be in a position to attempt to apply Theorem 5 to this problem.
However, in the next Theorem we shall show that this restriction on ;\ is not
necessary. That is, we shall show that a best starting approximation always
exists for this function without special assumptions on V and [a, b]. It seems
reasonable to expect that existence can always be obtained simply by requiring
V to be sufficiently close to j, for each f E S.

Next, we would like to note that for the special case that f(x) = x"',
a > °or f(x) = eX the best starting approximation is independent of m
(the number of iterations) and is a positive multiple of the best relative
approximation tof. (This result is actually true forf(x) = fJx"', fJ > 0, ex > 0
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andf(x) = ye13"', y > 0 and {3 > 0). For the case whenf(x) = x~ this result
was proved in [17]. For f(x) = eX it is new. For use in the next theorem,
we define p~ E V and p E V by

and

IKe'" - p)/e'" II"" = inf li(eX
- q)/ex Ii"" = "\.

qEM

Note p~ and p are the best relative approximations to x~ and ex, respectively,
with deviations ,.\~ and "\.

THEOREM 8. For m = 1,2,..., the following is true

(a) The best starting approximation for m Newton iterations for the
calculation of x" is y"p" where

[
(l + >,)9-1 - (l - >')13-1 ]"

Yo: = 2({3 - 1)"\(1 _ ,.\2)13-1 '

(b) The best starting approximation for m Newton iterations for the
calculation of e'" is yp where

y = exp[(1/2"\)(2"\ + (1 - ,.\) In(1 - ,.\) - (1 + >') In(1 + >'»]
= «(1 - "\)/(1 + ,\»1/2~(1 - >.2)-1/2.

Remark. That is, suppose one wishes to calculate the value of x" (some
G\: > 0 or e"') on an interval [a, b1 using the following scheme. Program a
function q E M into the machine. Calculate m Newton iterations on the
functionf(y) = y1/" - x using the sequence defined by (1), starting with the
value q(x). Use the m-th iterate as an approximation to x". Then, if one starts
with y"p" , the m-th iterate is a better relative approximation to x" than is the
m-th iterate starting with any other function q E M. This is how Cody [2J
suggested that one evaluate X1/2 in double precision on a CDC 3600. (that his
suggested starting approximation is actually ours was pointed out in [14]).

Proof Since the first result was proved in [17J, we shall only prove the
second statement. Actually, all that one must do to get this result is show that
N = Ne~ possesses property I and apply Theorem 2. Property I follows from
observing that

N(p)(x) = p(x)[I - In(p(x)/e''')]

so thatp(y)/eY = p(z)/ez clearly implies that N(p)(y)/eY = N(p)(z)/ez• Setting

rp(t) = t[I - In t]
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and noting that <p(l) is the only local maximum for <pet) when t > 0, we see
that the second condition of property I is also satisfied. Next, let us show that
the best relative approximation p to e'" from V belongs to

K = {h E C[a, b]: 0 < hex) < e1+a; on [a, b]}.

This follows from the fact that (1 - A) e'" ~ p(x) ~ (1 + ,\) e'" where A the
relative error satisfies 0 < ,\ < 1. Using property I, as in the proof of
Theorem 5, we find that yp has an error curve of the type described in
Theorem 2 where

y = «(1 - A)j(1 + A))l/2A(l - A2)-1/2.

Since 0 < y < I, we have that yp E K. Thus, by Theorem 2, yp is the best
starting approximation for e'" with respect to N. Since yp E K we have that
N(yp) E K. From this and by property I and the convergence properties of
the Newton iteration for e"', we immediately get that yp is the best starting
approximation for e'" with respect to Nm, m = 1, 2,... , by Theorem 2.

2. The final application that we shall consider concerns some recent work
by Merz [10]. Merz has shown that the iterative scheme

(y + X1/2)k + (y _ X1/2)k
<Pk(Y) = X

1
/
2

(y + X1/2)k _ (y _ X1/2)k

for a fixed integer k ?' 2 defines a sequence converging to X 1/ 2 starting with
any Y > 0 (i.e., Yo = y, Yn = <Pk(Yn-1) is such that Yn ->- X1/2). Furthermore,
the order of this convergence is k. That is,

lim[(Yn - x1 / 2)j(Yn_l - X1/2)k+l] = O.
11-+00

For k = 2, <P2(Y) = (1j2)(y + xjy) which is the standard Newton iteration.
Also, the formulas for larger k are quite nice. For example,

<J!7(Y) = (y7 + 21xy5 + 35x2y3 + 7x3y)j(7y6 + 35xy4+ 21x2y2+ x3).

These schemes possess the interesting property that

<J!k(<Pm(Y» = <Pk.m(Y)

so that one has the choice of repeated iterations with a lower order formula
or less iterations a higher order formula to obtain the same final iterate.

We wish to phrase this method of calculating X 1/ 2 into the terminology of
our paper and, thereby, obtain the best starting approximations for these
schemes. Thus, let us define t;Pk: K ->- K (K the positive continuous functions)
by
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for each h E K. It is easily seen that tPk is continuous and tPk(X1/2) = X 1/ 2• By
considering the function

for t > 0 and computing its derivative, one easily sees that for keven, tPk is
pointwise strictly monotone at X 1/ 2, one sided at X 1 /2 (from above) and
possesses property I at X 1 / 2• Likewise, for k odd, tPk is pointwise strictly
monotone at X 1/ 2 and possesses property I at X 1/ 2• Thus, by Lemma 3 and
Theorem 5 we know that for each k, the best starting approximation for X 1/ 2

on [a, b] with respect to tPk from M (as described in Theorem 8) is a positive
multiple of the best relative approximation to X 1/

2 on [a, b] from M. Further
more, if k is even then tPkm for m = 1,2,..., has the same starting value for all
m by Theorem 6 as tPkm(h) = tPk m(h) = tPk(tP";:-l(h».

Now for k even, we have that

ifJiq)(X)/X1/2~ I

for all q E M and x E [a, b]. Letting p be the best relative approximation to
X 1 / 2 on [a, b] with deviation A,

II(X1/2 - p(x»/X1/2 11", = inf Ij(X1 / 2 - q(x»/X1/21!oo = A.
qEM

we know by Theorem 5 that exists a unique y E % + A), I/O - A» such
that yp is the best starting approximation for X 1/ 2 on [a, b] with respect to
ifJkm for all m = 1,2,... , and y can be found by solving

where Xl and X2 are points at which P(X1) = 0 + A) X~f2 and p(x2) =
(1 - A) X 1/ 2• This equation leads to the simpler equation

(yO + .\) - I)k(y(1 - .\) + I)k = (y(1 + .\) + I)k(y(I - .\) - Iy.

Using the fact that k is even and the solution we desire belongs to
0/(1 + A), 1/(1 - .\», we obtain

y = (I/(I - .\2»1/2.

Thus every even ordered scheme has the same best starting approximation
namely (I/(1 - .\2»1/2 p.

For k odd, we must start with the equation
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This reduces to

MEINARDUS AND TAYLOR

((1 - AI' + 1')/(1 + AI' - y))k + ((1 + AI' + 1')/(1 - AI' - y))k = 2

and the unique solution I' in the interval (1/(1 + A), 1/(1 - A)) has to be found
here (apparently) by numerical methods on a computer.

Combining the above results, we have the following

THEOREM 9. Let p be the best relative approximation to X1/2 on [a, b],
o < a < b from M and set A = :!(p(x) - X1/2)/X1/21100' Let qm(x) be the
approximation to X1/2defined asfollows:

qo(x) = q(x), q E M,

qn(x) = cI>k(qn-1)(X), n = 1,2,... , m,

where k is a fixed positive integer and cI>" is defined above. Then qm(x) is the
unique best relative approximation to X1/2 on [a, b], 0 < a < b from cI>km(M)
if and only if qm(x) = YmP(x) where

I'm .-co (1/(1 - A2))1/2

if k is even and I'm is the only solution of

in the interval (1/(1 + A), 1/(1 - A)) for k odd.

Remark. Existence and uniqueness of YmP follows from Theorem 5. The
fact that cI>k is one-sided for k even implies I'm is independent of m and
actually solving for I'm shows that I'm is also independent of k.
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